• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Home
  • Crypto Currency
  • Technology
  • Contact
NEO Share

NEO Share

Sharing The Latest Tech News

  • Home
  • Artificial Intelligence
  • Machine Learning
  • Computers
  • Mobile
  • Crypto Currency

Flexible and powerful electronics

December 22, 2020 by systems

Researchers at the University of Tsukuba have created a new carbon-based electrical device, π-ion gel transistors (PIGTs), by using an ionic gel made of a conductive polymer. This work may lead to cheaper and more reliable flexible printable electronics.

Organic conductors, which are carbon-based polymers that can carry electrical currents, have the potential to radically change the way electronic devices are manufactured. These conductors have properties that can be tuned via chemical modification and may be easily printed as circuits. Compared with current silicon solar panels and transistors, systems based on organic conductors could be flexible and easier to install. However, their electrical conductivity can be drastically reduced if the conjugated polymer chains become disordered because of incorrect processing, which greatly limits their ability to compete with existing technologies.

Now, a team of researchers led by the University of Tsukuba have formulated a novel method for preserving the electrical properties of organic conductors by forming an “ion gel.” In this case, the solvent around the poly(para-phenyleneethynylene) (PPE) chains was replaced with an ionic liquid, which then turned into a gel. Using confocal fluorescent microscopy and scanning electron microscopy, the researchers were able to verify the morphology of the organic conductor.

“We showed that the internal structure of our π-ion gel is a nanofiber network of PPE, which is very good at reliably conducting electricity” says author Professor Yohei Yamamoto.

In addition to acting as wires for delocalized electrons, the polymer chains direct the flow of mobile ions, which can help move charge-carriers to the carbon rings. This allows current to flow through the entire volume of the device. The resulting transistor can switch on and off in response to voltage changes in less than 20 microseconds — which is faster than any previous device of this type.

“We plan to use this advance in supramolecular chemistry and organic electronics to design a whole arrange of flexible electronic devices,” explains Professor Yamamoto. The fast response time and high conductivity open the way for flexible sensors that enjoy the ease of fabrication associated with organic conductors, without sacrificing speed or performance.

Story Source:

Materials provided by University of Tsukuba. Note: Content may be edited for style and length.

Filed Under: Computers

Primary Sidebar

Stay Ahead: The Latest Tech News and Innovations

Cryptocurrency Market Updates: What’s Happening Now

Emerging Trends in Artificial Intelligence: What to Watch For

Top Cloud Computing Services to Secure Your Data

The Future of Mobile Technology: Recent Advancements and Predictions

Footer

  • Privacy Policy
  • Terms and Conditions

Copyright © 2025 NEO Share

Terms and Conditions - Privacy Policy