Check out this topical video from Predictive Analytics World founder Eric Siegel:
A computer can keep you in jail, or deny you a job, a loan, insurance coverage, or housing – and yet you cannot face your accuser. The predictive models generated by machine learning to drive these weighty decisions are generally kept locked up as a secret, unavailable for audit, inspection, or interrogation. The video above covers explainable machine learning and the loudly-advocated machine learning standards transparency and the right to explanation. Eric discusses why these standards generally are not met and overviews the policy hurdles and technical challenges that are holding us back.
About the Author
Eric Siegel, Ph.D., is a leading consultant and former Columbia University professor who makes machine learning understandable and captivating. He is the founder of the Predictive Analytics World and Deep Learning World conference series, which have served more than 17,000 attendees since 2009, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery”, a popular speaker who’s been commissioned for more than 110 keynote addresses, and executive editor of The Machine Learning Times. He authored the bestselling Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, which has been used in courses at more than 35 universities, and he won teaching awards when he was a professor at Columbia University, where he sang educational songs to his students. Eric also publishes op-eds on analytics and social justice. Follow him at @predictanalytic.