*‘Logistic Regression’** is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary). Source: **Statistics Solution*

For the conceptual overview of Logistic Regression, refer —

A Comprehensive Guide to Logistic Regression

*We shall now go through the code walkthrough for the implementation of the logistic regression algorithm from scratch:*

importnumpyas np

class LogisticRegression:

def __init__(self, learning_rate=0.001, n_iters=1000):

self.lr = learning_rate

self.n_iters = n_iters

self.weights = None

self.bias = None

def fit(self, X, y):

n_samples, n_features = X.shape

# init parameters

self.weights = np.zeros(n_features)

self.bias = 0

# gradient descent

for _ in range(self.n_iters):# approximate y with linear combination of weights and x, plus bias

linear_model = np.dot(X, self.weights) + self.bias# apply sigmoid function

y_predicted = self._sigmoid(linear_model)

# compute gradients

dw = (1 / n_samples) * np.dot(X.T, (y_predicted - y))

db = (1 / n_samples) * np.sum(y_predicted - y)# update parameters

self.weights -= self.lr * dw

self.bias -= self.lr * db

def predict(self, X):

linear_model = np.dot(X, self.weights) + self.bias

y_predicted = self._sigmoid(linear_model)

y_predicted_cls = [1 if i > 0.5 else 0 for i in y_predicted]

return np.array(y_predicted_cls)from

def _sigmoid(self, x):

return 1 / (1 + np.exp(-x))sklearnimportdatasets

fromsklearn.model_selectionimporttrain_test_splitdef accuracy(y_true, y_pred):

accuracy = np.sum(y_true == y_pred) / len(y_true)

return accuracybc = datasets.load_breast_cancer()

X, y = bc.data, bc.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=1234)

regressor =LogisticRegression(learning_rate=0.0001, n_iters=1000)

regressor.fit(X_train, y_train)

predictions = regressor.predict(X_train)

accuracy(y_train, predictions)Out:0.9298245614035088predictions = regressor.predict(X_test)

accuracy(y_test, predictions)Out:

0.9186813186813186

*Hope this helps! Good Luck 🙂*

*For complete code implementation:*

*To contact, or for further queries, feel free to drop a mail at — **tp6145@bennett.edu.in*