• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Home
  • Crypto Currency
  • Technology
  • Contact
NEO Share

NEO Share

Sharing The Latest Tech News

  • Home
  • Artificial Intelligence
  • Machine Learning
  • Computers
  • Mobile
  • Crypto Currency

SpaceNet 7 Results: Overachieving Pixels

January 29, 2021 by systems

Adam Van Etten

Preface: SpaceNet LLC is a nonprofit organization dedicated to accelerating open source, artificial intelligence applied research for geospatial applications, specifically foundational mapping (i.e., building footprint & road network detection). SpaceNet is run in collaboration by co-founder and managing partner CosmiQ Works, co-founder and co-chair Maxar Technologies, and our partners including Amazon Web Services (AWS), Capella Space, Topcoder, IEEE GRSS, the National Geospatial-Intelligence Agency and Planet.

In this post we dive into some of the building-level metrics for the SpaceNet 7 Multi-temporal Urban Development Challenge. We compare results to past SpaceNet challenges and note that despite the challenges of identifying small buildings in moderate resolution (4m) imagery, the pixels of SpaceNet 7 seem to overachieve when compared to SpaceNets past. A follow-up post will dive deeper into the temporal change and tracking lessons from this challenge.

1. Performonce vs IOU

For all five of the SpaceNet challenges focused on buildings (SpaceNets 3 and 5 explored road networks), we used an intersection over union (IoU) metric as the basis for SpaceNet scoring. This metric was illustrated in one of our SpaceNet 4 analysis blogs, see Figure 1.

Figure 1. A schematic representation of the Intersection over Union metric (originally from this blog). The overlapping area between the manually labeled ground truth (blue) and the predicted building (red) is divided by the combined area covered by both together.

An IoU of 0.5 or greater is typically used to determine success, and this threshold was adopted in previous SpaceNet challenges. Figure 2A illustrates performance for the winning SpaceNet 7 algorithm, scored over all 41 areas of interest (AOIs) in the public and private test sets. This test set contains over 4.4 million building footprints. For small objects the IoU is often reduced. Given the small size (in pixels) of buildings in the moderate (4.0m) resolution SpaceNet 7 dataset, for the SpaceNet 7 challenge we adopted a lower threshold of IoU ≥ 0.25 to mimic Equation 5 of ImageNet (see Figure 2B).

Figure 2. A: winning model performance with the true positive threshold IoU ≥ 0.5 (this was the threshold used by SpaceNet 1,2,4,6). B: winning model performance with the a threshold of IoU ≥ 0.25 (the threshold adopted for SpaceNet 7).

Figure 2 illustrates that the recall rate more than doubles if one drops the IOU threshold from 0.5 to 0.25. Analysis of the higher resolution (0.5m) imagery in SpaceNet 4 showed that the recall increased by only 15% when the IoU threshold was dropped to 0.25 from 0.5 (see Figure 2 here). Unsurprisingly, the moderate resolution imagery of SpaceNet 7 makes precise footprint prediction difficult, with a large fraction (~30%) of buildings having an 0.5 ≥ IoU ≥ 0.25.

2. Performance vs Building Area

Object size is an important predictor of detection performance, as noted in a number of previous investigations (e.g. [1, 2]). We follow the lead of analyses first performed in SpaceNet 4 (and later SpaceNet 6) in exploring object detection performance as function of building area. Figure 3 shows performance for all 4.4 million building footprints in the SpaceNet 7 public and private test sets for the winning submission of team lxastro0.

Figure 3. Building recall as a function of area for the winning SpaceNet 7 submission (IoU ≥ 0.25).

Figure 3 illustrates that building recall improves until an area of ~300 square meters, though the building area histogram peaks at ~160 square meters and then declines precipitously.

In Figure 4 below, we compare SpaceNet 7 performance to SpaceNets 4 and 6, both of which boasted a 0.5m resolution as opposed to the 4.0m resolution of SpaceNet 7. Here we use IoU ≥ 0.5 to directly compare the three challenges.

Filed Under: Machine Learning

Primary Sidebar

Stay Ahead: The Latest Tech News and Innovations

Cryptocurrency Market Updates: What’s Happening Now

Emerging Trends in Artificial Intelligence: What to Watch For

Top Cloud Computing Services to Secure Your Data

The Future of Mobile Technology: Recent Advancements and Predictions

Footer

  • Privacy Policy
  • Terms and Conditions

Copyright © 2025 NEO Share

Terms and Conditions - Privacy Policy